Редактирование: ПОД (3 поток), Ответы

Материал из eSyr's wiki.

Перейти к: навигация, поиск

Внимание: Вы не представились системе. Ваш IP-адрес будет записан в историю изменений этой страницы.

ПРЕДУПРЕЖДЕНИЕ: Длина этой страницы составляет 323 килобайт. Страницы, размер которых приближается к 32 КБ или превышает это значение, могут неверно отображаться в некоторых браузерах. Пожалуйста, рассмотрите вариант разбиения страницы на меньшие части.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.

Текущая версия Ваш текст
Строка 807: Строка 807:
= Симметричные мультипроцессоры. =
= Симметричные мультипроцессоры. =
-
Системы данного класса: SMP (Scalable Parallel Processor, ''может всё же Symmetric Multiprocessing?'') состоят из нескольких однородных процессоров и массива общей памяти (разделяемой памяти – shared memory): любой процессор может обращаться к любому элементу памяти. По этой схеме построены 2,4 процессорные SMP сервера на базе процессоров Intel, НР и т. д., причем процессоры подключены к памяти с помощью общей шины. Системы с большим числом процессоров (но не более 32) подключаются к общей памяти, разделенной на блоки, через не блокирующийся полный коммутатор: crossbar. Любой процессор системы получает данное по произвольному адресу памяти за одинаковое время, такая структура памяти называется: UMA - Uniform Memory Access (Architecture). Пример:НР-9000. Дальнейшее масштабирование (увеличение числа процессоров системы) SMP систем обеспечивается переходом к архитектуре памяти: NUMA - Nоn Uniform Memory Access. По схеме, называемой, этой иногда, кластеризацией SMP, соответствующие блоки памяти двух (или более) серверов соединяются кольцевой связью, обычно по GCI интерфейсу. При запросе данного, расположенного вне локального с сервере диапазона адресов, это данное по кольцевой связи переписывается дублируется в соответствующий блок локальной памяти, ту часть его, которая специально отводится для буферизации глобальных данных и из этого буфера поставляется потребителю. Эта буферизация прозрачна (невидима) пользователю, для которого вся память кластера имеет сквозную нумерацию, и время выборки данных, не локальных в сервере, будет равно времени выборки локальных данных при повторных обращениях к глобальному данному, когда оно уже переписано в буфер. Данный аппарат буферизации есть типичная схема кэш памяти. Так как к данным возможно обращение из любого процессора кластера, то буферизация, размножение данных требует обеспечение их когерентности. Когерентность данных состоит в том, что при изменении данного все его потребители должны получать это значение. Проблема когерентности усложняется дублированием данных еще и в процессорных кэшах системы. Системы, в которых обеспечена когерентность данных, буферизуемых в кэшах, называются кэш когерентными (cc-cache coherent), а архитектура памяти описываемого кластера: cc- NUMA (cache coherent Nоn Uniform Memory Access). Классической архитектурой принято считать систему SPP1000.
+
Системы данного класса: SMP (Scalable Parallel Processor) состоят из нескольких однородных процессоров и массива общей памяти (разделяемой памяти – shared memory): любой процессор может обращаться к любому элементу памяти. По этой схеме построены 2,4 процессорные SMP сервера на базе процессоров Intel, НР и т. д., причем процессоры подключены к памяти с помощью общей шины. Системы с большим числом процессоров (но не более 32) подключаются к общей памяти, разделенной на блоки, через не блокирующийся полный коммутатор: crossbar. Любой процессор системы получает данное по произвольному адресу памяти за одинаковое время, такая структура памяти называется: UMA - Uniform Memory Access (Architecture). Пример:НР-9000. Дальнейшее масштабирование (увеличение числа процессоров системы) SMP систем обеспечивается переходом к архитектуре памяти: NUMA - Nоn Uniform Memory Access. По схеме, называемой, этой иногда, кластеризацией SMP, соответствующие блоки памяти двух (или более) серверов соединяются кольцевой связью, обычно по GCI интерфейсу. При запросе данного, расположенного вне локального с сервере диапазона адресов, это данное по кольцевой связи переписывается дублируется в соответствующий блок локальной памяти, ту часть его, которая специально отводится для буферизации глобальных данных и из этого буфера поставляется потребителю. Эта буферизация прозрачна (невидима) пользователю, для которого вся память кластера имеет сквозную нумерацию, и время выборки данных, не локальных в сервере, будет равно времени выборки локальных данных при повторных обращениях к глобальному данному, когда оно уже переписано в буфер. Данный аппарат буферизации есть типичная схема кэш памяти. Так как к данным возможно обращение из любого процессора кластера, то буферизация, размножение данных требует обеспечение их когерентности. Когерентность данных состоит в том, что при изменении данного все его потребители должны получать это значение. Проблема когерентности усложняется дублированием данных еще и в процессорных кэшах системы. Системы, в которых обеспечена когерентность данных, буферизуемых в кэшах, называются кэш когерентными (cc-cache coherent), а архитектура памяти описываемого кластера: cc- NUMA (cache coherent Nоn Uniform Memory Access). Классической архитектурой принято считать систему SPP1000.
= Архитектура памяти cc-NUMA. =
= Архитектура памяти cc-NUMA. =

Пожалуйста, обратите внимание, что все ваши добавления могут быть отредактированы или удалены другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. eSyr's_wiki:Авторское право).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Шаблоны, использованные на этой странице:

Личные инструменты
Разделы