Редактирование: МОТП, Задачи на экзамене

Материал из eSyr's wiki.

Перейти к: навигация, поиск

Внимание: Вы не представились системе. Ваш IP-адрес будет записан в историю изменений этой страницы.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.

Текущая версия Ваш текст
Строка 32: Строка 32:
<math>B\bar{u}=\bar{b}_1u_1+\dots+\bar{b}_nu_n \Rightarrow \frac{\partial B\bar{u}}{\partial u_i}=b_i \Rightarrow \frac{\partial B\bar{u}}{\partial \bar{u}}=B=2A^TA</math>
<math>B\bar{u}=\bar{b}_1u_1+\dots+\bar{b}_nu_n \Rightarrow \frac{\partial B\bar{u}}{\partial u_i}=b_i \Rightarrow \frac{\partial B\bar{u}}{\partial \bar{u}}=B=2A^TA</math>
- 
-
==Задача 2. Поиск нормального псевдорешения==
 
-
Найти нормальное псевдорешение для системы линейных уравнений.
 
-
===Решение===
 
- 
-
'''В чём суть''': Мы хотим решить несовместную систему линейных уравнений <math>Ax \approx b</math>. Для этого мы будем минимизировать квадрат нормы невязки, т.е найдём <math>x</math> такой, что при нём квадрат нормы невязки будет наименьшим: <math>{\|Ax-b\|}^2\to min_{x}</math>. Теперь по шагам:
 
- 
-
1. Представим норму в матричном виде и раскроем скалярное произведение:
 
- 
-
<math>{\|Ax-b\|}^2=\langle Ax-b,Ax-b \rangle = {(Ax-b)}^{T}(Ax-b) = </math>
 
- 
-
<math> = {(Ax)}^{T}Ax-b^{T}Ax-{(Ax)}^{T}b+b^{T}b = x^{T}A^{T}Ax-2x^{T}A^{T}b+b^{T}b</math>
 
- 
-
2. Теперь возьмём производную и приравняем её к нулю:
 
- 
-
<math>\frac{\partial}{\partial x}(x^{T}A^{T}Ax-2x^{T}A^{T}b+b^{T}b) = 2{A}^{T}Ax - 2{A}^{T}b = 0</math>
 
- 
-
3. Из этого получаем <math>x</math>:
 
- 
-
<math>x={({A}^{T}A)}^{-1}{A}^{T}b</math>
 
- 
==Задача 3. Метод главных компонент (PCA)==
==Задача 3. Метод главных компонент (PCA)==
Строка 118: Строка 97:
Еще один вариант - посчитать напрямую <math>(k,b)=(X^TX)^{-1}X^TY</math>, где <math>X</math> - матрица, первый столбец которой составлен из <math>x_i</math>, второй - из единиц, а <math>Y</math> - столбец из <math>t_i</math>.
Еще один вариант - посчитать напрямую <math>(k,b)=(X^TX)^{-1}X^TY</math>, где <math>X</math> - матрица, первый столбец которой составлен из <math>x_i</math>, второй - из единиц, а <math>Y</math> - столбец из <math>t_i</math>.
- 
-
Либо еще другой вариант: <math>k = \frac{cov(X,T)}{DX}</math>, <math>b = \overline{T} - k\overline{X}</math>
 
== Задача 6. Правило множителей Лангранжа==
== Задача 6. Правило множителей Лангранжа==
Строка 146: Строка 123:
(По-моему, гораздо проще без функции Лагранжа: <math>y=x+1; f(x)=-6x^2-4x-3; x=-b/2a=-4/12=-1/3</math>)
(По-моему, гораздо проще без функции Лагранжа: <math>y=x+1; f(x)=-6x^2-4x-3; x=-b/2a=-4/12=-1/3</math>)
- 
- 
-
==Задача 8. Марковская сеть==
 
-
Дана марковская сеть с бинарными переменными вида решетка:
 
- 
-
---рисунок---
 
- 
-
Пусть все унарные энергии совпадают для всех вершин
 
-
<math> \Theta(x_i)=\Theta(x)</math>
 
-
и равны
 
-
<math>\Theta(0)=a, \Theta(1)=b</math>. Аналогично все бинарные энергии совпадают между собой
 
-
<math>
 
-
\Theta_{ij}(x_i; x_j) =
 
-
\Theta(x; y)
 
-
</math>
 
-
и равны
 
-
<math>
 
-
\Theta(0; 0) = c;
 
-
\Theta(0; 1) = d;
 
-
\Theta(1; 0) = e;
 
-
\Theta(1; 1) = f.
 
-
</math>
 
-
Требуется выполнить репараметризацию в этом графе так, чтобы все энергии
 
-
<math>
 
-
\Theta_{ij}(0; 0) = \Theta_{ij}(1; 1) = 0
 
-
</math>.
 
-
===Решение===
 
-
[[Изображение:Репараметризация.jpg|600px|Черновик]]
 
== Задача 10. ==
== Задача 10. ==
Строка 209: Строка 158:
g=4/11
g=4/11
- 
-
Второй шаг. С учетом нового начального приближения, вероятности 1, 2 и 3 - 3/11, 2/11 и 6/11 соответственно.
 
- 
-
Распределения скрытой компоненты рассчитываются аналогично, для X=1 и 3 отличий нет, для X=2 формула новая, но значения вероятностей тоже совпадают с первым шагом:
 
- 
-
P(Z=0)=g*(1-a) / (g*(1-a)+(1-g)*(1-b )) = (4/11 * 1/4) / (2/11) = 1/2
 
- 
-
Таким образом, функция для оптимизации будет такая же, как на предыдущем шаге. Алгоритм сошелся за два шага.
 
- 
-
Ответ:
 
- 
-
a=3/4
 
- 
-
b=6/7
 
- 
-
g=4/11
 
- 
== Задача 11. ==
== Задача 11. ==
===Решение===
===Решение===
Строка 334: Строка 266:
То есть наиболее вероятная последовательность состояний: 1-1-1-1-1-2-2
То есть наиболее вероятная последовательность состояний: 1-1-1-1-1-2-2
-
== Задача 15. Алгоритм вперед-назад ==
+
== Задача 14. Алгоритм вперед-назад ==
=== Решение ===
=== Решение ===
Описание алгоритма с простыми обозначениями можно прочитать здесь: [http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%91%D0%B0%D1%83%D0%BC%D0%B0-%D0%92%D0%B5%D0%BB%D1%88%D0%B0]
Описание алгоритма с простыми обозначениями можно прочитать здесь: [http://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%91%D0%B0%D1%83%D0%BC%D0%B0-%D0%92%D0%B5%D0%BB%D1%88%D0%B0]

Пожалуйста, обратите внимание, что все ваши добавления могут быть отредактированы или удалены другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. eSyr's_wiki:Авторское право).
НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Шаблоны, использованные на этой странице:

Разделы