МОТП, Контрольная 2013

Материал из eSyr's wiki.

Версия от 08:16, 23 апреля 2013; 95.27.38.51 (Обсуждение)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Задача 1

Рассматривается задача классификации объектов на два класса по одному признаку. Предполагается, что значение признака x для объектов из классов K1, K2 распределено по закону Рэлея:

 p(x|K_j) = \beta_j x e^{(-\frac{\beta_j}{2}x^2)}

Пусть β1 = 7.3 β2 = 1.3. Требуется найти области значений признака x, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.3 и 0.7.

Решение

По определению баесовского классификатора:

a(x) = \mathrm{arg}\max_{y\in Y} \lambda_{y} P_y p_y(x),

где x - классифицируемый пример, a(x) - классификатор, Y - множество классов (K1,K2), λy - цена ошибки (λ1 = λ2), Py - вероятность появления объекта класса y (априорная вероятность), py(x) - плотность распределения класса y в точке x.

Построим множество, на котором  \lambda_{1} P_1 p_1(x) \lessgtr \lambda_{2} P_2 p_2(x). Для этого решим уравнение:

 \lambda_{1} 0.3 p(x|K_1) \lessgtr \lambda_{2} 0.7 p(x|K_2)

 0.3 \cdot 7.3 \cdot x e^{(-\frac{7.3}{2}x^2)} \lessgtr 0.7 \cdot 1.3 \cdot x e^{(-\frac{1.3}{2}x^2)}

 e^{(-3x^2)} \lessgtr 0.4155

 -3x^2 \lessgtr \ln(0.4155) \lessgtr -0.878

 x \gtrless 0.541

Таким образом, при x > 0.541 классификатор отнесёт объект в класс K2, при x < 0.541 - в класс K1

Личные инструменты
Разделы