МОТП, Задачи на экзамене

Материал из eSyr's wiki.

Перейти к: навигация, поиск

За нерешение данных задач оценка снижается на балл.

1. Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать.

Решение:

2. Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Насложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа.

Решение:


3. Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся.

Решение:


4. Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида \hat{t}=kx+b, т.е. найти коэффициенты k и b.

Решение:

E(T,X,k,b)=\sum_{i=1}^n(t_i-kx_i-b)^2

\frac{\partial E(T,X,k,b)}{\partial k}=2\sum_{i=1}^n(t_i-kx_i-b)(-x_i)=0

\frac{\partial E(T,X,k,b)}{\partial b}=2\sum_{i=1}^n(t_i-kx_i-b)(-1)=0

\frac{1}{n}\sum_{i=1}^n(t_i-kx_i)=b

\sum_{i=1}^n(t_i-kx_i-b)x_i=0

k \left(\sum_{i=1}^nx_i^2-\frac{1}{n}\left(\sum_{i=1}^nx_i\right)^2\right)=\sum_{i=1}^nt_ix_i-\frac{1}{n}\left(\sum_{i=1}^nx_i\right)\left(\sum_{i=1}^nt_i\right)

Подставляем значения для xi и ti, получаем k, затем b. Другой вариант - посчитать напрямую (k,b) = (XTX) − 1XTY, где X - матрица, первый столбец которой составлен из xi, второй - из единиц, а Y - столбец из ti.

Личные инструменты
Разделы