Методы Оптимизации, Теормин
Материал из eSyr's wiki.
м (→Индивидуальная и массовая задачи, кодировка задачи, алгоритм решения массовой задачи, временная сложность алгоритма.) |
(→Задачи распознавания свойств. Классы P и NP.) |
||
Строка 36: | Строка 36: | ||
* <math>Y(\Pi)</math> -- множество всех индивидуальных задач, ответом на которые является "да". | * <math>Y(\Pi)</math> -- множество всех индивидуальных задач, ответом на которые является "да". | ||
- | '''Класс полиномиально разрешимых задач''' | + | '''Класс полиномиально разрешимых задач''' -- это такие задачи, временной сложность алгоритма решения которых ограниченна полиномом: |
+ | * <math>\exists A</math> такой, что <math>A</math> решает массовую задачу <math>\Pi</math> с кодировкой <math>e</math> | ||
+ | * <math>\exists p(\cdot)</math> -- полином такой, что <math>T_A(n) < p(n)~~,~\forall n \in Z_{+}</math> | ||
- | + | <u>Примеры неполиномиальных задач:</u> | |
- | + | * алгоритмически неразрешимые задачи: <math>\forall A ~~ \exists I \in \Pi</math> такая, что <math>A</math> не применим к <math>I</math>, например, <math>t_A(e(I)) = \infty</math> | |
- | + | ** [http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D0%BE%D1%84%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%BE_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5 10-я проблема Гильберта]: по данному многочлену <math>g</math> с целыми коэффициентами выяснить, имеет ли уравнение <math>g = 0</math> целочисленное решение | |
+ | * задачи, для которых длина записи выхода превышает любой наперед заданный полином от длины входа | ||
+ | ** найти все маршруты в задаче коммивояжёра | ||
== Теорема об экспоненциальной временной оценке для задач из класса NP. == | == Теорема об экспоненциальной временной оценке для задач из класса NP. == |
Версия 14:49, 7 июня 2009
Содержание |
Введение в теорию сложности
Индивидуальная и массовая задачи, кодировка задачи, алгоритм решения массовой задачи, временная сложность алгоритма.
Массовая задача Π:
- список свободных параметров;
- формулировка свойств, которым должно удовлетворять решение задачи.
Π есть множество индивидуальных задач . Индивидуальная задача получается, если всем параметрам присвоить конкретные значения.
Пусть E - конечный алфавит, а E* - множество слов в этом алфавите. Отображение e: называется кодировкой задачи П.
Алгоритм A решает массовую задачу Π, если для любой индивидуальной задачи :
- A применим к I, то есть останавливается за конечное число шагов
- A дает решение I
Кодировка задачи P -- такое отобраение , обладающее следующими свойствами:
- Возможность однозначно декодировать, то есть у двух различных ИЗ не может быть одинаковых кодировок.
- e,e − 1 -- полиномиально вычислимы
- Кодировка не избыточна, то есть для любой другой кодировки e1, удовлетворяющей 1 и 2 условиям справедливо:
Язык массовой задачи -- это множество правильных слов, то есть слов, соответствующих ИЗ, имеющим положительный ответ(подразумевается задача распознавания):
Язык алгоритма -- множество слов, принимаемых A, то есть таких, на которых алгоритм останавливается в состоянии qY, что соответсвует "да":
Алгоритм A решает массовую задачу Π, с кодировкой e, если L(e,Π) = L(A)
tA(s) -- число шагов алгоритма A для входа .
Временная сложность .
Задачи распознавания свойств. Классы P и NP.
Задача распознавания свойств -- массовая задача, предполагающая ответ "да" или "нет", в качестве своего решения.
- D(Π) -- множество всех возможных значений параметров массовой задачи.
- Y(Π) -- множество всех индивидуальных задач, ответом на которые является "да".
Класс полиномиально разрешимых задач -- это такие задачи, временной сложность алгоритма решения которых ограниченна полиномом:
- такой, что A решает массовую задачу Π с кодировкой e
- -- полином такой, что
Примеры неполиномиальных задач:
- алгоритмически неразрешимые задачи: такая, что A не применим к I, например,
- 10-я проблема Гильберта: по данному многочлену g с целыми коэффициентами выяснить, имеет ли уравнение g = 0 целочисленное решение
- задачи, для которых длина записи выхода превышает любой наперед заданный полином от длины входа
- найти все маршруты в задаче коммивояжёра
Теорема об экспоненциальной временной оценке для задач из класса NP.
Для любой П из NP существует ДМТ A, решающая ее с не более чем экспоненциальной временной сложностью: TA(n) < = 2p(n).
Класс co-NP. Пример задачи, допускающей хорошую характеризацию. Доказательство утверждения о взаимоотношении классов NPC и co-NP.
Задачи, допускающие хорошую характеристику -- это хадачи, входящие в класс: пересечение NP и co-Np
Пример такой задачи -- это задача определения простоты числа.