МОТП, Задачи на экзамене
Материал из eSyr's wiki.
Строка 4: | Строка 4: | ||
Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать. | Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать. | ||
- | + | ===Решение=== | |
Рассмотрим следующую задачу: <math>p=5</math>, <math>x_1=(1,1)</math>, <math>x_2=(1,2)</math>, <math>x_3=(3,2)</math>, <math>x_4=(4,1)</math>, <math>x_5=(6,4)</math>. | Рассмотрим следующую задачу: <math>p=5</math>, <math>x_1=(1,1)</math>, <math>x_2=(1,2)</math>, <math>x_3=(3,2)</math>, <math>x_4=(4,1)</math>, <math>x_5=(6,4)</math>. | ||
Строка 24: | Строка 24: | ||
Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа. | Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа. | ||
- | + | ===Решение=== | |
Плотность распределения Лапласа: <math>p(x|b,\mu)=\frac{1}{2b}e^{-\frac{|x-\mu|}{b}}</math>, <math>\mu</math> - сдвиг, <math>b</math> - масштаб (подробнее в [http://en.wikipedia.org/wiki/Laplace_distribution википедии]). | Плотность распределения Лапласа: <math>p(x|b,\mu)=\frac{1}{2b}e^{-\frac{|x-\mu|}{b}}</math>, <math>\mu</math> - сдвиг, <math>b</math> - масштаб (подробнее в [http://en.wikipedia.org/wiki/Laplace_distribution википедии]). | ||
- | + | ====Вариант 1: неизвестный сдвиг, единичный масштаб==== | |
Пусть есть распределение Лапласа с неизвестным матожиданием и единичным параметром масштаба. Дана выборка, взятая из этого распределения: <math>(x_1, x_2, \dots, x_n )</math>. Оценим параметр μ. | Пусть есть распределение Лапласа с неизвестным матожиданием и единичным параметром масштаба. Дана выборка, взятая из этого распределения: <math>(x_1, x_2, \dots, x_n )</math>. Оценим параметр μ. | ||
Строка 41: | Строка 41: | ||
Упорядочим выборку по возрастанию. Пусть теперь она выглядит так: <math>(x_1', x_2', \dots, x_n' )</math>. Рассмотрим последнюю функцию на интервалах вида <math>(-\infty, x_1'), (x_1', x_2'), \dots, (x_{n-1}', x_n'), (x_n', +\infty),</math>. На первом из них все функции под знаком суммы возрастают, итоговая производная равна ''n'', на втором -- одна убывает, остальные возрастают, производная равна (''n''-2), и т.д. Переломный момент наступает в середине -- в одной точке перегиба (если ''n'' нечётно), или на центральном интервале производная равна 0 (если ''n'' чётно). После этого функция только убывает. Там и достигается максимум правдоподобия. ''Короче, нужно нарисовать график, и всё будет понятно:'' максимум правдоподобия достигается в точке, равной медиане выборки. | Упорядочим выборку по возрастанию. Пусть теперь она выглядит так: <math>(x_1', x_2', \dots, x_n' )</math>. Рассмотрим последнюю функцию на интервалах вида <math>(-\infty, x_1'), (x_1', x_2'), \dots, (x_{n-1}', x_n'), (x_n', +\infty),</math>. На первом из них все функции под знаком суммы возрастают, итоговая производная равна ''n'', на втором -- одна убывает, остальные возрастают, производная равна (''n''-2), и т.д. Переломный момент наступает в середине -- в одной точке перегиба (если ''n'' нечётно), или на центральном интервале производная равна 0 (если ''n'' чётно). После этого функция только убывает. Там и достигается максимум правдоподобия. ''Короче, нужно нарисовать график, и всё будет понятно:'' максимум правдоподобия достигается в точке, равной медиане выборки. | ||
- | + | ====Вариант 2: нулевой сдвиг, неизвестный масштаб==== | |
<math>p(x|b)=\frac{1}{2b}e^{-\frac{|x|}{b}}=\frac{\lambda}{2}e^{-\lambda|x|}=p(x|\lambda)</math> | <math>p(x|b)=\frac{1}{2b}e^{-\frac{|x|}{b}}=\frac{\lambda}{2}e^{-\lambda|x|}=p(x|\lambda)</math> | ||
Строка 54: | Строка 54: | ||
Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся. | Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся. | ||
- | + | ===Решение=== | |
==Линейная регрессия== | ==Линейная регрессия== | ||
Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида <math>\hat{t}=kx+b</math>, т.е. найти коэффициенты <math>k</math> и <math>b</math>. | Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида <math>\hat{t}=kx+b</math>, т.е. найти коэффициенты <math>k</math> и <math>b</math>. | ||
- | + | ===Решение=== | |
<math>E(T,X,k,b)=\sum_{i=1}^n(t_i-kx_i-b)^2</math> | <math>E(T,X,k,b)=\sum_{i=1}^n(t_i-kx_i-b)^2</math> |
Версия 09:19, 26 мая 2009
За нерешение данных задач оценка снижается на балл. — Д. П. Ветров
Содержание |
Метод главных компонент (PCA)
Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать.
Решение
Рассмотрим следующую задачу: p = 5, x1 = (1,1), x2 = (1,2), x3 = (3,2), x4 = (4,1), x5 = (6,4).
Находим.
Находим
Решаем
Находим собственный вектор, соответствующий , решая . Получаем - собственный вектор, соответствующий максимальному собственному значению матрицы ковариации. Он и будет являться первой главной компонентой.
Подробные вычисления не приведены. Можете сами повторить и сверить результаты. Однако сильно не надейтесь найти ошибку, решение проверено в MATLAB.
Метод максимального правдоподобия (ММП)
Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа.
Решение
Плотность распределения Лапласа: , μ - сдвиг, b - масштаб (подробнее в википедии).
Вариант 1: неизвестный сдвиг, единичный масштаб
Пусть есть распределение Лапласа с неизвестным матожиданием и единичным параметром масштаба. Дана выборка, взятая из этого распределения: . Оценим параметр μ.
Функция распределения запишется так:
Функция правдоподобия:
Покажем, что эта функция достигает максимума в точке -- когда параметр равен медиане выборки.
Упорядочим выборку по возрастанию. Пусть теперь она выглядит так: . Рассмотрим последнюю функцию на интервалах вида . На первом из них все функции под знаком суммы возрастают, итоговая производная равна n, на втором -- одна убывает, остальные возрастают, производная равна (n-2), и т.д. Переломный момент наступает в середине -- в одной точке перегиба (если n нечётно), или на центральном интервале производная равна 0 (если n чётно). После этого функция только убывает. Там и достигается максимум правдоподобия. Короче, нужно нарисовать график, и всё будет понятно: максимум правдоподобия достигается в точке, равной медиане выборки.
Вариант 2: нулевой сдвиг, неизвестный масштаб
Правило множителей Лангранжа
Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся.
Решение
Линейная регрессия
Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида , т.е. найти коэффициенты k и b.
Решение
Подставляем значения для xi и ti, получаем k, затем b. Решение проверено на нескольких наборах данных в MATLAB.
Еще один вариант - посчитать напрямую (k,b) = (XTX) − 1XTY, где X - матрица, первый столбец которой составлен из xi, второй - из единиц, а Y - столбец из ti.