ВПнМ/Теормин
Материал из eSyr's wiki.
(→Абстракция. Абстракция трасс. Абстракция системы переходов. Необходимое и достаточное условие корректности LTS модели.) |
(→Абстракция. Абстракция трасс. Абстракция системы переходов. Необходимое и достаточное условие корректности LTS модели.) |
||
Строка 100: | Строка 100: | ||
Представим трассу в форме интерпретации I: <math>I(tr) = <N, \leqslant, \xi></math> | Представим трассу в форме интерпретации I: <math>I(tr) = <N, \leqslant, \xi></math> | ||
- | * N - множество натуральных чисел | + | * <math>N</math> - множество натуральных чисел |
- | * <math>\leqslant</math> - отношение порядка на N | + | * <math>\leqslant</math> - отношение порядка на <math>N</math> |
* <math>\xi: N \times AP \rightarrow \{true, false\}, ~~ \forall n>0, p \in AP ~~ \Rightarrow ~~ \xi(n, p) = true \Leftrightarrow p \in L(s)</math> | * <math>\xi: N \times AP \rightarrow \{true, false\}, ~~ \forall n>0, p \in AP ~~ \Rightarrow ~~ \xi(n, p) = true \Leftrightarrow p \in L(s)</math> | ||
Строка 108: | Строка 108: | ||
* <math>I(tr) = <N, \leqslant, \xi'>, ~~ \xi: N \times AP' = \{true, false\}</math> | * <math>I(tr) = <N, \leqslant, \xi'>, ~~ \xi: N \times AP' = \{true, false\}</math> | ||
- | Будем говорить, что tr' является '''абстракцией''' tr, если | + | Будем говорить, что трасса tr' является '''абстракцией трассы''' tr, если |
# <math>AP' \subseteq AP</math> | # <math>AP' \subseteq AP</math> | ||
# <math>\exists \alpha : N \rightarrow N</math> такое, что <math>\forall n,k \in N, n \leqslant k ~~ \Rightarrow ~~ \alpha(n) \leqslant \alpha(k) </math> | # <math>\exists \alpha : N \rightarrow N</math> такое, что <math>\forall n,k \in N, n \leqslant k ~~ \Rightarrow ~~ \alpha(n) \leqslant \alpha(k) </math> | ||
# <math>\forall n \in N, p \in AP' ~~ \Rightarrow ~~ \xi(n, p) = \xi'(n, p)</math> | # <math>\forall n \in N, p \in AP' ~~ \Rightarrow ~~ \xi(n, p) = \xi'(n, p)</math> | ||
+ | |||
+ | Пример абстракции трассы: Лекция 2, слайд 53 | ||
+ | |||
+ | ''' Условие корректности модели ''' - <math>\forall tr \in Traces(TS(P)) \exists tr' \in Traces(TS(M)) ~ : ~ tr \leqslant tr'</math>, где | ||
+ | * <math>P</math> - система | ||
+ | * <math>M</math> - модель этой системы | ||
+ | |||
+ | При этом, если <math>\varphi</math> - некоторое свойство системы, то <math>M \models \varphi ~ \Rightarrow ~ P \models \varphi</math> выполняется тогда и только тогда, когда верно условие корректности модели. | ||
=== Абстракция. Абстракция системы переходов. Достаточное условие корректности LTS модели. Адекватность LTS модели. === | === Абстракция. Абстракция системы переходов. Достаточное условие корректности LTS модели. Адекватность LTS модели. === | ||
=== Абстракция. Абстракция графов программ. Отношение слабой симуляции. === | === Абстракция. Абстракция графов программ. Отношение слабой симуляции. === |
Версия 11:28, 20 мая 2009
Лекция 1
Валидация - исследование и обоснование того, что спецификация ПО и само ПО через реализованную в нём функциональность удовлетворяет ребованиям пользователей.
Верификация - исследование и обоснование того, что программа соответствует своей спецификации.
Верификация в общем случае алгоритмически неразрешима.
Методы верификации:
- "Полное" тестирование (слайды 14-22)
- Имитационное моделирование
- Доказательство теорем (27-29)
- Статический анализ (30-33)
- Верификация на моделях (34-38)
Моделирование и абстракция
Моделирование программ. Понятие состояния. Потенциальные и достижимые состояния. Требования к модели. Процесс построения модели.
Схема верификации на моделях (Лекция 2, слайд 3)
Состояние программы - совокупность значений переменных и управления, связанных с некоторой моделью программы.
Модель - упрощённое описание реальности, выполненное с определенной целью.
- с каждым объектом может быть связано несколько моделей
- каждая модель отражает свой аспект реальности
Аспекты модели:
- простота - модель должна быть проще, чем реальность
- корректность - не расходиться с реальностью
- адекватность - соответствовать решаемой задаче
Построение модели
- формализация требований (постановка задачи моделирования)
- выбор языка моделирования
- абстракция системы до модели с учётом требований
Моделирование программ. Размеченные системы переходов. Детерминизм и недетерминизм. Вычисления и трассы. Свойства линейного времени. Выполнимость свойства на трассе.
Размеченная система переходов (LTS)
- S - множество состояний
- Act - множество действий
- τ - невидимое действие
- - тотальное отношение переходов
- - начальное состояние
- AP - множество атомарных высказываний
- - функция разметки
S, Act - конечные или счётные множества
Пример LTS: Лекция 2, слайд 40-41
Прямые потомки
- - такие состояния s', которые непосредственно вытекают из s через переход a
- - все возможные состояния s', которые непосредственно вытекают из s
Система детерменирована:
- по действиям тогда и только тогда, когда
- по атомарным высказываниям
- ( количество одинаково размеченных потомков не больше одного )
Недетерменизм - это фича! Полезен для:
- моделирования параллельного выполнения в режиме чередования (интерливинга)
- позволяет не указывать скорость выполнения процессов
- моделирования прототипа системы
- не ограничивает реализацию заданным порядком выполнения операторов
- построения абстракции реальной системы
- модель может быть построена по неполной информации
Вычисления
- Конечный фрагмент вычисления σ системы переходов TS называется конечная последовательность чередующихся состояний и действий
- Бесконечный (максимальный) фрагмент вычисления ρ -
- Начальный фрагмент вычисления - фрагмент вычисления, для которого
- Вычисление - начальный максимальный фрагмент вычисления
Достижимое состояние (из начального) в системе переходов TS - такое состояние , для которого существует конечный фрагмент вычисления
Rich(TS) - множество всех достижимых состояний в TS
Трасса
Свойства линейного времени
- Свойство определяет набор допустимых трасс:
- Система переходов TS удовлетворяет свойству линейного времени
Моделирование программ. Графы программ. Статическая и операционная семантика.
Параллелизм. Чередование систем переходов.
Параллелизм. Чередование графов программ. Случаи без разделяемых переменных и с разделяемыми переменными.
Параллелизм. Синхронный параллелизм. Рандеву.
Параллелизм. Асинхронный параллелизм. Системы с каналами. Операционная семантика.
Абстракция. Абстракция трасс. Абстракция системы переходов. Необходимое и достаточное условие корректности LTS модели.
Представим трассу в форме интерпретации I:
- N - множество натуральных чисел
- - отношение порядка на N
Рассмотрим трассы tr и tr' такие, что
Будем говорить, что трасса tr' является абстракцией трассы tr, если
- такое, что
Пример абстракции трассы: Лекция 2, слайд 53
Условие корректности модели - , где
- P - система
- M - модель этой системы
При этом, если - некоторое свойство системы, то выполняется тогда и только тогда, когда верно условие корректности модели.