МОТП, Задачи на экзамене
Материал из eSyr's wiki.
(→Формула 2) |
(→Метод главных компонент (PCA)) |
||
Строка 34: | Строка 34: | ||
==Метод главных компонент (PCA)== | ==Метод главных компонент (PCA)== | ||
- | Даны р точек в двухмерном пространстве | + | Даны ''р'' точек в двухмерном пространстве. Найти методом главных компонент первую главную компоненту. |
===Решение=== | ===Решение=== | ||
Строка 40: | Строка 40: | ||
Рассмотрим следующую задачу: <math>p=5</math>, <math>x_1=(1,1)</math>, <math>x_2=(1,2)</math>, <math>x_3=(3,2)</math>, <math>x_4=(4,1)</math>, <math>x_5=(6,4)</math>. | Рассмотрим следующую задачу: <math>p=5</math>, <math>x_1=(1,1)</math>, <math>x_2=(1,2)</math>, <math>x_3=(3,2)</math>, <math>x_4=(4,1)</math>, <math>x_5=(6,4)</math>. | ||
- | Находим<math> \bar{x}=\frac{1}{p}\sum_{i=1}^px_i=(3,2)</math>. | + | Находим <math>\bar{x}=\frac{1}{p}\sum_{i=1}^px_i=(3,2)</math>. |
Находим <math> | Находим <math> | ||
Строка 47: | Строка 47: | ||
</math> | </math> | ||
- | Решаем <math>|S-\lambda I| = 0 \Rightarrow \lambda=2.4\pm \sqrt{3.4}</math> | + | Решаем <math>|S-\lambda I| = 0 \Rightarrow \lambda=2.4\pm \sqrt{3.4}</math>. |
- | Находим собственный вектор, соответствующий <math>\lambda_1=2.4+\sqrt{3.4}</math>, решая <math>(S-\lambda_1I)\hat{d}=0</math>. Получаем <math>\hat{d}=(0.9085, 0.4179)</math> | + | Находим собственный вектор, соответствующий <math>\lambda_1=2.4+\sqrt{3.4}</math>, решая <math>(S-\lambda_1I)\hat{d}=0</math>. Получаем <math>\hat{d}=(0.9085, 0.4179)</math> — собственный вектор, соответствующий максимальному собственному значению матрицы ковариации. Он и будет являться первой главной компонентой. |
- | + | ||
- | + | ||
==Метод максимального правдоподобия (ММП)== | ==Метод максимального правдоподобия (ММП)== |
Версия 11:33, 30 мая 2009
Математические основы теории прогнозирования
Материалы по курсу
Билеты (2009) | Примеры задач (2009) | Примеры задач контрольной работы (2013) | Определения из теории вероятностей
За нерешение данных задач оценка снижается на балл. — Д. П. Ветров
Содержание |
Вывод формул для векторного дифференцирования
Вывести (считаем все матрицы вещественными):
Решение
Формула 1
Формула 2
Далее через всюду обозначен столбец матрицы A с номером i.
Формула 3
Далее через всюду обозначен столбец матрицы B с номером i.
Метод главных компонент (PCA)
Даны р точек в двухмерном пространстве. Найти методом главных компонент первую главную компоненту.
Решение
Рассмотрим следующую задачу: p = 5, x1 = (1,1), x2 = (1,2), x3 = (3,2), x4 = (4,1), x5 = (6,4).
Находим .
Находим
Решаем .
Находим собственный вектор, соответствующий , решая . Получаем — собственный вектор, соответствующий максимальному собственному значению матрицы ковариации. Он и будет являться первой главной компонентой.
Метод максимального правдоподобия (ММП)
Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа.
Решение
Плотность распределения Лапласа: , μ - сдвиг, b - масштаб (подробнее в википедии).
Вариант 1: неизвестный сдвиг, единичный масштаб
Пусть есть распределение Лапласа с неизвестным матожиданием и единичным параметром масштаба. Дана выборка, взятая из этого распределения: . Оценим параметр μ.
Функция распределения запишется так:
Функция правдоподобия:
Покажем, что эта функция достигает максимума в точке -- когда параметр равен медиане выборки.
Упорядочим выборку по возрастанию. Пусть теперь она выглядит так: . Рассмотрим последнюю функцию на интервалах вида . На первом из них все функции под знаком суммы возрастают, итоговая производная равна n, на втором -- одна убывает, остальные возрастают, производная равна (n-2), и т.д. Переломный момент наступает в середине -- в одной точке перегиба (если n нечётно), или на центральном интервале производная равна 0 (если n чётно). После этого функция только убывает. Там и достигается максимум правдоподобия. Короче, нужно нарисовать график, и всё будет понятно: максимум правдоподобия достигается в точке, равной медиане выборки.
Вариант 2: нулевой сдвиг, неизвестный масштаб
Правило множителей Лангранжа
Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся.
Решение
Пусть нам необходимо максимизировать функцию f(x,y) = − 5x2 + 2xy − 3y2 при условии x − y + 1 = 0.
Запишем функцию Лагранжа .
Приравняем частные производные к нулю:
.
Линейная регрессия
Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида , т.е. найти коэффициенты k и b.
Решение
Подставляем значения для xi и ti, получаем k, затем b. Решение проверено на нескольких наборах данных в MATLAB.
Еще один вариант - посчитать напрямую (k,b) = (XTX) − 1XTY, где X - матрица, первый столбец которой составлен из xi, второй - из единиц, а Y - столбец из ti.
Математические основы теории прогнозирования
Материалы по курсу
Билеты (2009) | Примеры задач (2009) | Примеры задач контрольной работы (2013) | Определения из теории вероятностей