МОТП, Задачи на экзамене
Материал из eSyr's wiki.
(Крышечки у x заменены на чёрточки.) |
(→Решение) |
||
Строка 91: | Строка 91: | ||
Еще один вариант - посчитать напрямую <math>(k,b)=(X^TX)^{-1}X^TY</math>, где <math>X</math> - матрица, первый столбец которой составлен из <math>x_i</math>, второй - из единиц, а <math>Y</math> - столбец из <math>t_i</math>. | Еще один вариант - посчитать напрямую <math>(k,b)=(X^TX)^{-1}X^TY</math>, где <math>X</math> - матрица, первый столбец которой составлен из <math>x_i</math>, второй - из единиц, а <math>Y</math> - столбец из <math>t_i</math>. | ||
+ | |||
+ | |||
+ | == Доказательство формул == | ||
+ | |||
+ | <math><c,u> = c_1u_1 + ... + c_nu_n</math> | ||
+ | |||
+ | производная по вектору -- это вектор, сотоавленный из покомпанентных производных: | ||
+ | <math> \frac{d<c,u>}{du_1} = c_1u_1' + u_1c_1' + ... = c_1</math> | ||
+ | и так для каждой компоненты, следовательно получаем итоговый вектор -- <math> c_1 </math> | ||
+ | |||
+ | <math>(||Au-f||^2)' = 2(Au-f)(Au-f)' = 2A(Au-f)</math> | ||
+ | и аналогично 2-я формула |
Версия 17:11, 27 мая 2009
За нерешение данных задач оценка снижается на балл. — Д. П. Ветров
Содержание |
Метод главных компонент (PCA)
Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать.
Решение
Рассмотрим следующую задачу: p = 5, x1 = (1,1), x2 = (1,2), x3 = (3,2), x4 = (4,1), x5 = (6,4).
Находим.
Находим
Решаем
Находим собственный вектор, соответствующий , решая . Получаем - собственный вектор, соответствующий максимальному собственному значению матрицы ковариации. Он и будет являться первой главной компонентой.
Подробные вычисления не приведены. Можете сами повторить и сверить результаты. Однако сильно не надейтесь найти ошибку, решение проверено в MATLAB.
Метод максимального правдоподобия (ММП)
Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа.
Решение
Плотность распределения Лапласа: , μ - сдвиг, b - масштаб (подробнее в википедии).
Вариант 1: неизвестный сдвиг, единичный масштаб
Пусть есть распределение Лапласа с неизвестным матожиданием и единичным параметром масштаба. Дана выборка, взятая из этого распределения: . Оценим параметр μ.
Функция распределения запишется так:
Функция правдоподобия:
Покажем, что эта функция достигает максимума в точке -- когда параметр равен медиане выборки.
Упорядочим выборку по возрастанию. Пусть теперь она выглядит так: . Рассмотрим последнюю функцию на интервалах вида . На первом из них все функции под знаком суммы возрастают, итоговая производная равна n, на втором -- одна убывает, остальные возрастают, производная равна (n-2), и т.д. Переломный момент наступает в середине -- в одной точке перегиба (если n нечётно), или на центральном интервале производная равна 0 (если n чётно). После этого функция только убывает. Там и достигается максимум правдоподобия. Короче, нужно нарисовать график, и всё будет понятно: максимум правдоподобия достигается в точке, равной медиане выборки.
Вариант 2: нулевой сдвиг, неизвестный масштаб
Правило множителей Лангранжа
Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся.
Решение
Пусть нам необходимо максимизировать функцию f(x,y) = − 5x2 + 2xy − 3y2 при условии x − y + 1 = 0.
Запишем функцию Лагранжа .
Приравняем частные производные к нулю:
.
Линейная регрессия
Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида , т.е. найти коэффициенты k и b.
Решение
Подставляем значения для xi и ti, получаем k, затем b. Решение проверено на нескольких наборах данных в MATLAB.
Еще один вариант - посчитать напрямую (k,b) = (XTX) − 1XTY, где X - матрица, первый столбец которой составлен из xi, второй - из единиц, а Y - столбец из ti.
Доказательство формул
< c,u > = c1u1 + ... + cnun
производная по вектору -- это вектор, сотоавленный из покомпанентных производных: и так для каждой компоненты, следовательно получаем итоговый вектор -- c1
( | | Au − f | | 2)' = 2(Au − f)(Au − f)' = 2A(Au − f)
и аналогично 2-я формула