МОТП, Задачи на экзамене
Материал из eSyr's wiki.
(заголовки) |
|||
Строка 1: | Строка 1: | ||
- | За нерешение данных задач оценка снижается на балл. | + | Д.П.Ветров: За нерешение данных задач оценка снижается на балл. |
+ | ==Метод главных компонент (PCA)== | ||
1. Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать. | 1. Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать. | ||
Строка 20: | Строка 21: | ||
Подробные вычисления не приведены. Можете сами повторить и сверить результаты. Однако сильно не надейтесь найти ошибку, решение проверено в MATLAB. | Подробные вычисления не приведены. Можете сами повторить и сверить результаты. Однако сильно не надейтесь найти ошибку, решение проверено в MATLAB. | ||
- | + | ==Метод максимального правдоподобия (ММП)== | |
2. Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа. | 2. Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа. | ||
Строка 26: | Строка 27: | ||
+ | ==Правило множителей Лангранжа== | ||
3. Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся. | 3. Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся. | ||
'''Решение:''' | '''Решение:''' | ||
- | + | ==Линейная регрессия== | |
4. Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида <math>\hat{t}=kx+b</math>, т.е. найти коэффициенты <math>k</math> и <math>b</math>. | 4. Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида <math>\hat{t}=kx+b</math>, т.е. найти коэффициенты <math>k</math> и <math>b</math>. | ||
Версия 07:40, 26 мая 2009
Д.П.Ветров: За нерешение данных задач оценка снижается на балл.
Содержание |
Метод главных компонент (PCA)
1. Даны р точек в двухмерном пространстве (буду прямо их ручкой у вас на листочке задавать). Найти методом главных компонент первую главную компоненту. Так что вспоминайте как матрицу 2х2 к главным осям приводить и ковариации считать.
Решение:
Рассмотрим следующую задачу: p = 5, x1 = (1,1), x2 = (1,2), x3 = (3,2), x4 = (4,1), x5 = (6,4).
Находим.
Находим
Решаем
Находим собственный вектор, соответствующий , решая . Получаем - собственный вектор, соответствующий максимальному собственному значению матрицы ковариации. Он и будет являться первой главной компонентой.
Подробные вычисления не приведены. Можете сами повторить и сверить результаты. Однако сильно не надейтесь найти ошибку, решение проверено в MATLAB.
Метод максимального правдоподобия (ММП)
2. Как метко заметил Оверрайдер, будут задачки на поиск оценки максимального правдоподобия. Не сложные, но чтобы было интереснее, не с нормальным распределением. Что-нибудь типа найти оценку МП на параметр распределения Лапласа.
Решение:
Правило множителей Лангранжа
3. Обязательно кому-то дам задачку на условную максимизацию квадратичной функции с линейным ограничением в виде равенства. Писанины там немного, но вот без правила множителей Лагранжа обойтись вряд ли удастся.
Решение:
Линейная регрессия
4. Даны 3-4 точки в двухмерном пространстве - одна координата, это х, другая - t. Задача построить по ним линейную регрессию вида , т.е. найти коэффициенты k и b.
Решение:
Подставляем значения для xi и ti, получаем k, затем b. Решение проверено на нескольких наборах данных в MATLAB.
Еще один вариант - посчитать напрямую (k,b) = (XTX) − 1XTY, где X - матрица, первый столбец которой составлен из xi, второй - из единиц, а Y - столбец из ti.